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Abstract

Atmospheric ionizing radiation (AIR) produces chemically active

radicals in biological tissues that alter the cell function or result in cell

death. The AIR ER-2 flight measurements will enable scientists to

study the radiation risk associated with the high-altitude operation of a

commercial supersonic transport. The ER-2 radiation measurement

flights will follow predetermined, carefully chosen courses to provide

an appropriate database matrix which will enable the evaluation of

predictive modeling techniques. Explicit scientific results such as dose

rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ion-

ization rate associated with these flights are predicted by using the AIR

model. Through these flight experiments, we will further increase our

knowledge and understanding of the AIR environment and our ability

to assess the risk from the associated hazard.

1. Introduction

The broad aim of the atmospheric ionizing radiation (AIR) ER-2 flight measurement campaign is to

improve our understanding of the ionizing radiation environment, for example, composition, spectral

distribution, and corresponding intensities in the upper troposphere and lower stratosphere where people

flying future supersonic transports will spend the majority of their flight time. These radiation measure-

ments will enable radiobiologists to improve our understanding of the health risks associated with this

exposure to high-altitude flight. The impetus to examine the impact of ionizing radiation stems from

(1) recent reductions in recommended radiation exposure limits by the International Commission on

Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements

(NCRP), and (2) recent experimental results showing that an uncertainty in aircraft radiation exposure

exists. The NCRP examined the state of knowledge of atmospheric radiation in high-altitude flight and

made recommendations on the need for improved information to develop a protection philosophy

for high-altitude commercial operations. The High-Speed Research (HSR) Environmental Impact

Radiation group developed the AIR project to reduce the uncertainties of radiation measurements appli-

cable to the high-altitude flight program of the High-Speed Civil Transport (HSCT). Once these uncer-

tainties are reduced, an adequate protection philosophy can be developed.

Langley Research Center (LaRC) performed atmospheric radiation studies under the Supersonic

Transport (SST) development program in which important ionizing radiation components were mea-

sured and extended by calculation to develop the existing AIR model. In that program, the measured

neutron energy spectrum was limited to an upper value of 10 MeV by the instrumentation of the era.

Extension of the neutron spectrum to higher energies was made by using theoretical models. Subsequent

evaluation of solar particle events showed that high exposures will occur on important high-latitude

routes, but acceptable levels of exposure can be obtained if a timely descent to subsonic altitudes is

made. The principal concern was for pregnant occupants onboard the aircraft (ref. 1). As a result of

these studies, the Federal Aviation Administration (FAA) Advisory Committee on the Radiobiological

Aspects of the SST recommended (ref. 2) the following:

1. Crew members will have to be informed of their exposure levels.

2. Maximum exposures on any flight should be limited to 5 mSv.

3. Airborne radiation detection devices for total exposure and exposure rates will be provided.



4. A satellite monitoring system should provide SST aircraft real-time information on atmospheric

radiation levels for exposure mitigation.

5. A solar forecasting system will warn flight operations of an impending solar event for flight

scheduling and alert status.

These recommendations are a reasonable starting point for requirements of the HSCT with some modi-

fication reflecting new standards of protection as a result of changing risk coefficients.

One result of the SST studies was the realization that subsonic air crews are among the most highly

exposed occupational groups (refs. 1 and 3). This study prompted the FAA to develop the CAR1 (Civil
Aeronautical Research Institute) exposure estimation code based on the LUIN transport code (devel-

oped by the Department of Energy (DOE) Environmental Measurements Laboratory) to further study
these air crews (ref. 4). The estimated risk of serious illness to the child of an air crew member during

pregnancy is on the order of 1.3 per thousand in excess of the general population risk rate of 1.15 per
thousand (ref. 5), including all types of cancer and mental retardation among children. Hence, the FAA

recommended that air carriers begin to train their employees on the risks of in-flight subsonic exposure

(ref. 6). The dose rates at the HSCT altitudes are a factor of 2 to 3 higher than for subsonic operations,
and the HSCT crew's annual flight hours will have to be reduced by this same factor to maintain expo-

sure levels comparable to those of the subsonic crews. One may assume that similar instruction for air

crews will be required for HSCT operations and that restrictions on crew usage of the HSCT will, by

necessity, be different from those on subsonic transports.

Regulations for exposure limits are based primarily on the estimated cancer risk coefficients. These

coefficients have increased significantly over the last decade because solid tumor appearance is higher

among the World War II nuclear weapons survivors than was initially anticipated (refs. 7 through 10).

As a result, new recommendations for reducing regulatory limits have been made by national and inter-

national advisory bodies (refs. 10 and 11). Whereas subsonic crew exposures are well under the current

regulatory limits, the substantial reductions (by factors of 2.5 to 5) in the recommended limits will result

in the need to improve air crew exposure estimates (refs. 12 and 13). Hence, a workshop on Radiation

Exposure of Civil Air Crews held in Luxembourg on June 25 to 27, 1991 was sponsored by the Com-

mission of the European Communities Directorate General XI for Environmental Nuclear Safety and
Civil Protection (ref. 12). The workshop noted the closure of the gap between subsonic air crew expo-

sures and the newly recommended regulatory limits and, in fact, was concerned that limits may be

exceeded in some cases. Therefore, uncertainty in exposure estimates becomes a critical issue, and

emphases on the number and spectral content of high-energy neutrons, as well as the penetrating multi-
ple charged ions, were identified as a critical issue for subsonic flight crews. The issues for HSCT com-

mercial air travel are compounded by the higher operating altitudes (higher exposure levels) and the

possibility of exposures to a large solar event, wherein annual exposure limits could be greatly exceeded
on a single flight (refs. 1 and 14). Because of the higher expected exposures in high-altitude flight, the

congressionally chartered Federal Advisory Agency on Radiation Protection (NCRP) examined the data
on atmospheric radiation and made recommendations (ref. 15) on the need for future studies as follows:

1. Make additional measurements of atmospheric ionizing radiation components with special

emphasis on high-energy neutrons.

2. Conduct a survey of proton and neutron biological data on stochastic effects and developmental

injury for evaluation of appropriate risk factors.

3. Develop methods to avoid solar energetic particles, especially for flight above 60 000 ft.
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4. Developanappropriateradiationprotectionphilosophyandradiationprotectionguidelinesfor
commercialflighttransportation,especiallyathighaltitudesof50000to80000ft.

Clearly,theseissuesmustbeaddressedbeforetheHSCTgoesintocommercialoperationtoensurethe
safetyofthecrewandpassengers.In directresponsetotheNCRPrecommendations,developmentof an
experimentalflightpackageto reducetheuncertaintyinAIR modelsisbeingreadied.Thefocusedgoal
of thisprojectis to developan improvedAIR modelwithuncertaintiesin theatmosphericradiation
componentsof 20percentor lesstoallowimprovedestimationof theassociatedhealthriskstopassen-
gersandcrew.Specialemphasiswill begiventothehigh-energy(10to 1000MeV)neutronsin thealti-
tuderangeof 50000to 70000ft.

Theresultswill beexpressedin termsof anenvironmentalAIR modelabletorepresenttheambient
radiationcomponents,includingimportantspectralcomponentswithangulardistributions,whichwill
allowevaluationof aircraftshieldingpropertiesandthegeometryof thehumanbody.Themodelalso
mustbecapableof representingtheatmosphericradiationlevelsglobally,asafunctionof solarmodula-
tionandof evaluatingradiationlevelsduringsolarparticleeventincreases.Followingthedevelopment
of theAIRmodel,impactstudiesonradiationexposurelimitsforcrewusageandpassengers(especially
frequentflyers)will beperformedto assesstheneedof developinga specificphilosophyto control
exposuresin HSCToperations.Usingdatafrom availablesatellitesystems,newreal-timesoftware,
basedonthenewAIR model,will allowriskmitigationandflightplanningin thecaseof a largesolar
event.

Thesestudieswill resultin requirementsfor studyingtheeconomicimpactonoperationscosts.For
example,it hasbeensuggestedthattheHSCTcrewbeusedatonethirdto onehalfthenumberof block
hoursnowusedby subsonicaircraftto minimizeexposure.Thisreductionin hourswill requiremore
crewsatincreasedcost.Theotherpossibilityis to rotatecrewsthroughlessexposedroutesfor aportion
of eachyear,especiallyduringadeclaredpregnancyamongthecrew.Theneedfor andtheextentof
suchexposurecontrolmeasuresmustawaittheimprovementof theAIR model.

2. ER-2 Measurement and Instrumentation

An instrument package is being developed in accordance with the NCRP recommendations through

an international guest investigator collaborative project to acquire the use of existing instruments to

measure the many elements of the radiation spectra. Instrument selection criteria were established

which include the following: (1) instruments must fit into the cargo bay areas of the ER-2 airplane and

be able to function in that environment (some high-quality laboratory instruments were rejected because
of their large size or inability to operate in the ER-2 environment), (2) instruments must be free for the

project to meet budget constraints, (3) instruments must have a principal investigator with his or her
own resources to conduct data analysis, and (4) the instrument array must include all significant radia-

tion components for which the NCRP made minimal requirements. The flight package must be opera-
tional, and the first flight must occur before or near the maximum in the galactic cosmic ray intensity

(circa spring-summer 1997) and extend through the next cosmic ray minimum (circa 2000 to 2003).

The flight package developed used all available space in the ER-2 cargo areas. The instrument lay-

out is shown in figure 1. The primary instruments in the package consisted of neutron spectrometer

detectors, scintillation counters, an ion chamber from the Environmental Measurements Laboratory

(EML) of the Department of Energy, and charged-particle telescopes from the Institute of Aerospace

Medicine of Deutsche Forschungsanstalt fur Luft- und Raumfahrt (DLR), and Johnson Space Flight

Center. Ten other instruments from Germany, Italy, the United Kingdom (UK), and Canada made up

most of the remainder of the flight package. These included passive track detectors from the Institute of
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AerospaceMedicine,DLR,andtheUniversityofSanFrancisco;tissueequivalentproportionalcounters
(TEPC's)fromBoeingandtheDefenceResearchEstablishmentin Ontario,Canada;anddosimeters
fromBoeing,theRoyalMilitaryAcademyinOntario,Canada,andtheNationalRadiologicalProtection
Board(NRPB)in theUK. Theexistingprimaryinstrumentsandthedatasystemweremodifiedfor
operationon theER-2.A dataacquisitionsystemwasincorporatedto controloperationof theentire
instrumentpackage,andto recorddatafromtheprimaryinstrumentsduringflight.Datafromtheother
instrumentswererecordedseparatelyby eachinstrumentandwererecoveredafteraflight. Thefirst
flightswereinJune1997nearsolarminimumandneedtobecontinuedthroughsolarmaximum,which
isexpectedonorbeforefall-winter2003.

3. AIR Model Development

The basic quantities of the present AIR model are the air ionization rate, the 1 to 10 MeV neutron

flux, and the rate of nuclear star events in nuclear emulsion. These quantities were measured over a

complete set of altitudes, geomagnetic latitudes, and over the solar cycle and were scaled according to

known procedures to allow a total time-dependent mapping of the global radiation field. The limitations

of the model concern the high-energy neutron spectrum, the quality factor of the ionic components, and

the relative contribution of the nuclear stars. The first step in improved model development is to add

estimates of the proton and light ion flux by using available transport models and databases. An interna-

tional agreement with the Japan Atomic Energy Research Institute is being negotiated to provide com-

putational support for adding improved results for the radiation-induced fields from the galactic cosmic

ray protons. These results will be augmented by the light and heavier galactic cosmic ion components

by using the LaRC cosmic ray transport codes. Global fields, as a function of time, will be generated by

using the worldwide vertical cutoff database and high-latitude neutron monitor count rates. Model vali-

dation will require a definition of the mapping of the model field quantities to the ER-2 instruments.

Although all investigators are responsible for defining their own instrument response functions, the

LaRC team will assist in these definitions to every extent possible within funding and manpower limita-

tions. The first model developed for atmospheric ionizing radiation was empirically based on the global

measurements program under the LaRC SST study (ref. 1). The instrumentation consisted of tissue

equivalent ion chambers, fast neutron spectrometers, and nuclear emulsion. Limited flights were made

with tissue equivalent proportional counters (TEPC's), Bonner spheres, and the Concorde prototype
radiation monitoring instrument. The flights were made over most of solar cycle 20 with altitude sur-

veys, latitude surveys, and measurements during the solar flare of March 1969. Unfortunately, the pro-

gram was terminated in the year prior to the largest recorded solar event that was observed during solar
cycle 20, the 4 August 1972 event. The data set was augmented by the decades of measurements of air

ionization rates by using argon filled steel-walled ion chambers. The high-energy neutrons were esti-
mated by using Monte Carlo calculations as an extension of the measured 1 to 10 MeV flux from the

fast neutron spectrometers. These theoretical high-energy neutron flux calculations indicate that over

half the neutron dose is from neutrons of energy above 10 MeV and are quite uncertain in their spectral

content and intensity, as was noted in the LaRC study (ref. 1), concluded by the Luxembourg workshop

(ref. 12) and by the NCRP (ref. 15). The solar particle event predictions are based on Monte Carlo cal-

culations using the Bertini nuclear model and the United Kingdom nuclear data files (ref. 1).

The AIR model development should continue to parallel that of the flight program and should use

state-of-the-art transport codes and databases to generate input data to the AIR model. The response
functions of each instrument need to be modeled for validation of the AIR model by comparison with

the flight data. The Bonner sphere, scintillation counters, particle telescopes, and nuclear track detectors

will be used to improve the model spectral intensities.
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4. Flight Trajectory

All flights originate from Moffett Field, California, the current home base of the NASA ER-2

aircraft. The ground track of the scheduled flights (flights 2, 3, 5, 6, and 7) are shown in figure 2 with
radiation contours of the AIR model.

Flight 1 will be approximately a 2-hr engineering flight required by the ER-2 operations office with
pilot's choice of flight path (assumed to be a racetrack around the home base). The aim is to check

aircraft operational characteristics and all aircraft and experimental instrumentation to ensure that

everything is operating satisfactorily prior to the acquisition of science measurements.

Flight 2 will be approximately a 6.5-hr flight on prescribed northern and easterly headings and will

return to home base over the reverse flight path. The aim for this flight is to determine whether radiation

measurements are being affected by the shielding characteristics of onboard aviation fuel, to determine

the consistency of instrument readings, and to take science data as a function of altitude along a

constant-radiation, geomagnetic latitude line. The flight plan for flight 2 is as follows:

• (37024 ' N, 122o6 ' W) Take offand climb from Moffett Field.

• (39019'49 '' N, 121o27 ' W) Turn easterly and continue climb.

• (38030 ' N, 117 ° W) Begin 20-min altitude hold (assumed to be near Wine Glass at 63000 ft);

then climb back to an altitude at which climb at constant Mach number can be attained along

the prescribed easterly heading.

• (37030 ' N, 112 ° W) Correct course to maintain constant cutoff.

• (35054 ' N, 105 ° W) Correct course to maintain constant cutoff. Begin to maintain constant

altitude for 10 min before reaching point E

• (34039 ' N, 100 ° W) Execute 180 ° turn and make slow descent (500 ft/min) (Amarillo) to

52 000 ft. Maintain 52 000 fi for 10 min and then climb to normal cruise altitude along the

prescribed flight path, repeating the ground track on the return to Wine Glass.

• (35054 ' N, 105 ° W) Correct course to maintain constant cutoff.

• (37030 ' N, 112 ° W) Correct course to maintain constant cutoff.

• Before returning to Wine Glass, descend to the same altitude as on the outbound leg over
Wine Glass (assumed to be 63 000 ft) and maintain that altitude for about 20 min.

• (38°30 ' N, 117 ° W) Wine Glass, start descent in preparation of ending mission.

• (39019'49 '' N, 121°27' W) Turn south and continue descent.

• (37024 , N, 12206 ' W) Land at Moffett Field.

Flight 3 will be approximately an 8-hr flight on prescribed northern, western, and southern head-

ings. The aim is to obtain radiation measurements as a function of geomagnetic latitude as far north as



possiblewithanaltitudeexcursion along a constant-radiation, geomagnetic latitude line at the extreme

northern latitude location. The flight plan for flight 3 is as follows:

• (37024 ' N, 122°6 ' W) Take off and climb from Moffett Field and ascend to cruise altitude.

Cruise to point G.

(59000 ' N, 116°00 ' W) Turn west toward point H. Hold altitude fixed for 5 min (Ft. Nelson)
after west turn; then execute a medium-rate descent (750 ft/min) to 52000 ft. Maintain
52 000 ft for 5 min.

• (60°00 ' N, 123°40 ' W) Turn southerly (toward Moffett Field) and ascend to cruise altitude.
Cruise to Moffett Field.

• (37°24 ' N, 122o6 ' W) Descend and land.

Flight 4 will be an engineering flight of approximately 2 hr after instrumentation additions-changes

with pilot's choice of flight path (assumed to be a racetrack around home base). The aim is to check air-

craft operational characteristics and all aircraft and experimental instrumentation to ensure everything is

operating satisfactorily prior to the acquisition of science measurements.

Flight 5 will be approximately a 6.5-hr flight on a prescribed southerly heading over the North

Pacific Ocean. At the position Latitude 17 deg N, longitude 127 deg 28 min W, execute a 180 ° turn and

return to base. The aim of the mission is to obtain radiation measurements as a function of geomagnetic

latitude to as far south as reasonably possible.

Flight 6 will be approximately a 6.5-hr flight on prescribed northern, western, and southern head-

ings. The aim is to obtain radiation measurements as a function of geomagnetic latitude as far north as

possible with altitude excursions along a constant-radiation, geomagnetic latitude line near Edmonton,

Canada. The flight plan for flight 6 is as follows:

• (37024 ' N, 12206 ' W) Take off and climb from Moffett Field, ascend to cruise altitude, and

cruise to point J.

(54048 ' N, 116048 ' W). Turn west toward point K. Hold altitude fixed for 5 min after west

turn; then execute a medium-rate descent (750 ft/min) to 52 000 ft and maintain 52 000 ft for
5 min.

• (56000 ' N, 125 ° W) Turn south, ascend to cruise altitude and cruise toward Moffett Field.

• (37o24 ' N, 12206 ' W) Descend and land.

Flight 7 is a repeat of flight 5. The aim of flight 7 is to check data measurement repeatability.

Flight 8a will be approximately a 3-hr flight; however, this flight must be combined with flight 8b

with a 12-hr interval between the flights. Science requirements dictate that flight 8a should be launched

about 11:00 a.m. Immediately after takeoff, climb to maximum altitude, cruise for about 30 min, and
hold constant altitude for about 10 rain. Initiate descent about 12:00 noon and descend at about

500 ft/min (slow rate) to 52 000 ft; then continue descent at the standard rate of descent to landing. The

aim of this flight is to acquire daylight data for comparison with nighttime data to determine diurnal
variation of radiation.
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Flight8bwill beapproximatelya3-hrflightafterdark(with takeoffafterabout11:00p.m.)witha
flightpathsimilarto flight8a(assumedto bearacetrackaroundthehomebase).Climbto maximum
altitude,cruiseforabout30min,andholdaconstantaltitudefor about10min.Initiatedescentat 12:00
midnightanddescendatabout500ft/min(slowrate)to 52000ft; thencontinuedescentatthestandard
rateof descentto landing.Theaimof this flight is toacquirenighttimedatafor comparisonwithday-
lightdatatodeterminediurnalvariationof radiation.

Thetotalflighthoursfor thesemissionsis44hr.Wecurrentlybudgetedfor46hr;anadditional2hr(as
reserve)arerecommendedincaseweneedextraengineeringflights.

5. Expectation From AIR Model

Computer simulations are made for flights 2, 3, 5, and 6. For each flight, the ground track is

depicted in figure 2. The ground track is taken as great circular routes between the navigation points in

the figure. The flight path, the location of the flight path, the latitude, the longitude, as well as the alti-

tude profile as a function of time, are obtained. The flight path for flight 2 is shown in figures 3(a)
to 3(c). The scientific quantities such as magnetic cutoff, dose equivalent rate H, dose rate I3, neutron

flux, and air ionization rate are predicted as a function of flight time, expressed in minutes. The results

for flights 2, 3, 5, and 6 are presented in figures 3(a) to 20. For example, figures 3(a) and 3(b) show the

coordinates of the flight path in which the pilot tries to maintain a constant geomagnetic cutoff. Because

flight 2 has the prescribed northern and easterly heading and return to home base over the reverse flight

path, the coordinates clearly show all the locations as a function of time. Figure 3(c) shows the altitude

profile that the airplane is to execute, which also serves as the input data in the AIR model. Figures 3(d)

to 7 are the predictions from the AIR model. Because flight 2 is designed to fly parallel to geomagnetic

latitude for the major leg (easterly heading and reverse), clearly figure 3(d) shows that the magnetic cut-

off value is a horizontal straight line about 4 GV. Figures 4 and 5 show the predictions for dose equiva-

lent rate and dose rate from the AIR model. Keep in mind that those rate values are a complicated

function of flight coordinates as well as the altitude and other factors. Based on the figures, clearly the
altitude factor alone suggests that the rate can change from 12 to -15 percent from 16 km to 20 km

altitude. The AIR model predicts the neutron flux whose energy range is about 1 to 10 MeV in figure 6

and air ionization rate in figure 7 along the flight path for flight 2. That is, the AIR model predicts an
altitude variation in the 1 to 10 MeV neutron flux of about 12 percent and in the air ionization rate of

11 percent at the 4 GV cutoff.

Figures 8(a) to 12 show similar quantities for flight 3, that is, the 8-hr flight on prescribed northern,

western, and southern headings. As we mentioned earlier, the purpose for this flight is to obtain radia-

tion measurements as a function of geomagnetic latitude to as far north as possible, with an altitude

excursion along a constant-radiation, geomagnetic latitude line at the extreme northern latitude location.

Figure 8(b) shows that at the extreme northern latitude, the magnetic cutoff value registers with 0.5 GV

were achieved where the altitude survey was performed. Compare figures 9 to 12 with figures 3(c)

through 5 for the flight 3 route; the AIR model predicts much higher radiation values than does the

flight 2 route. In other words, flight 3, from a radiation safety point of view, flies in a less safe route than

flight 2, as was expected. The altitude survey at 0.5 GV shows a variation on the order of 11 percent in

1 to l0 MeV neutron flux and 23 percent for the air ionization rate. Because the prime purpose of

flight 3 is to perform a latitude survey, we see that the high-altitude variation in the environment during
the cruise portion of the flight, along the northern path, is 32 percent in the 1 to 10 MeV neutron flux

and 33 percent in the air ionization rate.

Flight 5 will examine the latitude dependence of the high-altitude environment south of the ER-2

base at Ames Research Center. The model predicted a variation of only a few percent in the radiation
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levelsinapossiblealtitudesurvey,andsuchasurveywaseliminatedfromtheflightplanbecauseit was
totakeplaceovertheAtlanticOceanandwasconsideredanunnecessaryhazardtothepilot.Thecutoff
reachedispredictedtobeover12GV,givingalatitudesurveyinconjunctionwithflight3afactorof 24
incutoffvariation.It isclearfromfigures14and15thatavalleyinexposureratesisbeingapproached
aswefly intoequatorialregions.

Flight6 is a shorternorthernflight to theedgeof the northernplateauof theexposures,while
repeatingthelatitudedependencemeasurementsupto0.8GV.Themaximumenvironmentalquantities
arelower,butthealtitudevariationis asomewhatsmallerexcursion.

6. Concluding Remarks

The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain

a relatively complete measurement set of the high-altitude radiation level environment, is described in

this paper. The primary thrust is to charcterize the atmospheric radiation and to define dose levels at

high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring

devices for protecting air crews. With a few chosen routes, we can measure the experimental results and

validate the AIR model predictions. Eventually, as more measurements are made, we gain more under-

standing about the hazardous radiation environment and acquire more confidence in the prediction
models.

NASA Langley Research Center
Hampton, VA 23681-2199
April 24, 1998
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Figure 1. Instrument locations on the ER-2.
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Flightpath coordin_es
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E 35 54 -105 00

F 34 39 -100 00

G 59 00 -116 00

H 60 00 -123 40

I 17 00 -127 28

J 54 48 -116 48

K 56 00 -123 00
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Figure 18. Flight path as function of time for flight 6.
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